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Abstract In this paper, a dynamic relationship between the industrial production index

(IPI) of Japan and the IPI of South Korea is presented. With the help of a VAR(2) model,

and using the terminology of Granger causality, it is shown that the IPI of Japan Granger

causes the IPI of South Korea, but the IPI of South Korea Granger does not cause the IPI of

Japan. Other aspects of this dynamic relationship between these two indices are presented

as well.

Keywords Industrial production index (IPI) � VAR models � Granger causality � Impulse

response functions � Forecast error variance decomposition � Software: R, MTS, RATS,

vars

Introduction

The industrial production index (IPI) is an index covering production in mining,

manufacturing, and public utilities (electricity, gas, and water), but excluding construction.

Production indices are normally compiled at monthly or quarterly frequency to measure

increases and decreases in production output. The final focus is the compilation of annual

statistics. Indices of industrial production that is compiled in all OECD member countries

are used as a main short-term economic indicator in their own right because of the impact

that fluctuations in the level of industrial activity have on the remainder of the economy.

In this paper, we consider a dynamical relationship between the IPIs of Japan and South

Korea with the help a vector autoregressive model of order two: VAR(2).

& Agustin Alonso-Rodriguez
aalonso@rcumariacristina.com

1 Real Centro Universitario ‘‘Escorial-Maria Cristina’’, San Lorenzo de El Escorial, Madrid, Spain

123

Korean Soc Sci J
DOI 10.1007/s40483-015-0023-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s40483-015-0023-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40483-015-0023-z&amp;domain=pdf


VAR(p) models

According to Tsay (2014, pp. 27–30), the most commonly used econometric model for

multiple time series is the multiple vector autoregressive or VAR model, and there are

good reasons for this assertion.

The multivariate time series zt follows a VAR model of order p if it can be written as

follows:

zt ¼ /0 þ
Xp

i¼1

/izt�i þ at

with zt a vector of time series of dimension k 9 1, /0 a vector of constants of dimension:

k 9 1, /i a matrix of dimension k 9 k, for i[ 0 and /p = 0, and at a sequence of

independent and identically distributed (i.i.d.) random vectors with mean zero and co-

variance matrix Ra positive definite.

To summarize the properties of VAR(p) models, it is interesting to start with the bilinear

VAR(1):

zt ¼ /0 þ /1zt�i þ at

written explicitly as:

z1t

z2t

 !
¼

/10

/20

 !
þ

/1;11 /1;12

/1;21 /1;22

 !
z1;t�1

z2;t�1

 !
þ

a1t

a2t

 !

or

z1t ¼ /10 þ /1;11z1;t�1 þ /1;12z2;t�1 þ a1t

z2t ¼ /20 þ /1;21z1;t�1 þ /1;22z2;t�1 þ a2t

That is, /1,12 shows the linear dependence of z1t on z2,t-1 in the presence of z1,t-1. And

/1,21 measures the linear relationship between z2t and z1,t-1 in the presence of z2,t-1 and

similarly with the other coefficients of matrix /1.

This matrix representation of the model gives us the insight of the so-called Granger

causality.

If the off-diagonal elements of matrix /1 are zero, that is /1,12 = /1,21 = 0, the con-

sequence is that z1t and z2t are not dynamically correlated, in which case each series

follows a univariate AR(1) model, which can be handled accordingly. The two series are

said to be uncoupled.

On the other side, if /1,12 = 0 but /1,21 = 0 then we have

z1t ¼ /10 þ /1;11z1;t�1 þ a1t

and

z2t ¼ /20 þ /1;21z1;t�1 þ /1;22z2;t�1 þ a2t

That is, z1t does not depend on the past values of z2t but z2t depends on the past values of

z1t. This is an example of a transfer function relationship, in control engineering. In

econometrics, this is an example of Granger causality between two series, with z1t causing

z2t but z1t not being caused by z2t.
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As Tsay (2014, p. 29) remarks for this bivariate VAR(1) model, if the variance–

covariance matrix Ra is not diagonal, then z1t and z2t are instantaneously or con-

temporaneously correlated, with instantaneous Granger causality, going in both

directions.

The Data

From the database of the Federal Reserve Bank of St. Louis, we obtained the data for the

industrial production indices of Japan and South Korea, taken from the Main Economic

Indicators-complete database, a publication of the Organisation for Economic Co-op-

eration and Development (OECD), accessed on 10-14-2014. In this paper, we consider the

IPI for both countries as annual data and not seasonally adjusted.

Due to the different starting years of the index data, here we use data from 1980 to

2013; a total of 33 observations. The last six observations of these series are as

follows:

Japan SKorea

28 113.77411 83.28158

29 110.13249 86.08375

30 86.97609 85.97600

31 97.07524 105.95833

32 97.70852 107.42500

33 96.85860 107.74167

Notice the different behaviors of Japanese and South Korean data at the end of this

sample.

Using the RATS package, the graphic evolution of these two series appears in Fig. 1.

At first look, the two series seem to be non-stationary, but with VAR models their

transformation is not recommended (RATS, User’s Guide, p. 205).

The basic statistics, mean, and standard deviation of both series are as follows:

IPI of Japan and South Korea
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Fig. 1 Temporal evolution of Japanese IPI and South Korean IPI : 1980–2013
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Mean:

Japan SKorea

94.86357 44.83992

Standard deviation:

Japan SKorea

11.98977 31.37950

In our case, the bivariate vector zt is

zt ¼
z1t

z2t

 !

with Japan’s IPI as z1t and South Korea’s IPI as z2t.

Next, the number of lags of the model has to be determined. With the help of RATS

package, and using the Akaike information criterion (AIC), corrected for degrees of

freedom, the order of our VAR is

VAR lag selection

Lags AICC

0 16.0209602

1 11.3257987

2 11.2212767*

3 11.2655814

4 11.6957794

5 12.3560570

6 13.2148853

7 14.7279664

8 16.6339483

That is, p = 2. With this value of p, we come to the MTS package for the estimation of

the model m1.
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m1 = VAR(datos,2)
Constant term: 
Estimates:  21.19133 2.832771 
Std.Error:  10.26493 4.897367 
AR coefficient matrix 
AR( 1 )-matrix 

[,1]  [,2]
[1,]  0.698 0.255
[2,] -0.546 1.264
standard error 

[,1]  [,2]
[1,] 0.234 0.373
[2,] 0.112 0.178
AR( 2 )-matrix 

[,1]   [,2]
[1,] 0.0902 -0.275
[2,] 0.5433 -0.259
standard error 

[,1]  [,2]
[1,] 0.241 0.408
[2,] 0.115 0.194

Residuals cov-mtx: 
[,1]      [,2]

[1,] 28.07192 10.316474
[2,] 10.31647  6.389766

det(SSE) =  72.94335 
AIC =  4.774532 
BIC =  5.137321 
HQ  =  4.896599

This estimated model has non-significant coefficients at the usual a = 0.05 significance

level. Suppressing these coefficients, we get the simplified m1simplif model:
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m1simplif = refVAR(m1,thres=1.96)
Constant term: 
Estimates:  21.82964 0 
Std.Error:  8.470252 0 
AR coefficient matrix 
AR( 1 )-matrix 

[,1] [,2]
[1,]  0.781 0.00
[2,] -0.431 1.02
standard error 

[,1]   [,2]
[1,] 0.0880 0.0000
[2,] 0.0847 0.0194
AR( 2 )-matrix 

[,1] [,2]
[1,] 0.000    0
[2,] 0.459    0
standard error 

[,1] [,2]
[1,] 0.0000    0
[2,] 0.0868    0

Residuals cov-mtx: 
[,1]     [,2]

[1,] 28.57840 10.80264
[2,] 10.80264  6.99180

det(SSE) =  83.1174 
AIC =  4.662678 
BIC =  4.844073 
HQ  =  4.723712

Now, this model has significant coefficients, and validating residuals, and in a different

format, we can write:

z1t

z2t

 !
¼

21:83

0

 !
þ 0:781 0

�0:431 1:02

� �
z1;t�1

z2;t�1

 !
þ

0 0

0:459 0

 !
z1;t�2

z2;t�2

 !
þ

a1t

a2t

 !

With a variance–covariance matrix of residuals:
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R̂a ¼
28:578 10:803

10:803 6:992

 !

Written separately, the two estimated models, are as follows:

ẑ1t ¼ 21:83þ 0:781z1;t�1

and

ẑ2t ¼ �0:431z1;t�1 þ 1:02z2;t�1 þ 0:459z1;t�2

In words, the IPI of Japan, in the presence of South Korea’s IPI, depends on its lagged

first period, while the IPI of South Korea in the presence of Japan’s IPI depends on its first

lagged period and on the two lagged periods of the Japanese IPI. If we employ the

terminology of Granger causality, we can say that the IPI of Japan causes the IPI of South

Korea, but the IPI of South Korea does not cause the IPI of Japan.

The impulse response

The VAR(p) models allow us to establish the dynamical relationship between the variables

of the system, but at the same time it is possible to consider this relationship from other

points of view: the impulse response and the forecast error variance decomposition.

Sometimes it is of interest to evaluate the effects of a stochastic change or shock in one

variable on its own evolution and on the evolution of the others variables. This type of

analysis is known as the impulse response or multiplier analysis.

The impulse response measures the effect of a shock caused in one variable of the

system on its own and on the rest of the variables. This effect it is better understood in the

MA version of the VAR model.

zt ¼ lþ at þ h1at�1 þ h2at�2 þ h3at�3 þ � � �

truncated at some lag, q, with h0 = 1 and at a succession of i.i.d. random innovations,

having mean zero and constant variance.

In compact form:

zt ¼ lþ
Xq

i¼0

hiat�i; h0 ¼ 1

If we now induce a unitary impulse or a shock in at; that is, if we set to zero all the at
except one, at-k, which is set to 1, then by successive substitutions, we get

zt�k � l ¼ ht�k

zt�k�1 � l ¼ ht�k�1

..

.

zt � l ¼ ht

This succession of values of hi is called the impulse response on zt of the unitary shock

in at.
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If Ra is not diagonal, it is unrealistic to consider that a unitary shock induced in the error

term of one of the variables in the VAR can be isolated from the other errors terms. That is

it would be impossible to establish the impact of a unitary shock in the IPI of Japan on the

IPI of South Korea. To solve this problem we could use the Cholesky decomposition of

matrix Ra, a solution possible due to the fact that this matrix is symmetric and positive

definite. In this case, there is a matrix P such that Ra = PP’ and P’RP’-1 = I. With this

P-1 it is possible to convert at on a vector of uncorrelated errors et, that is

zt ¼ lþ
Xq

i¼0

hiPP
�1at�i ¼ lþ

Xq

i¼0

Biet�i

after substituting Bi = hiP and et = P-1at. The elements of Bi are the impulse response

coefficients of zt with orthogonal innovations.

The problem involved in the Cholesky decomposition of Ra should be mentioned. That

is, the order of variables in the vector zt has consequences. This is not the place for more

details, but we could consider this artificiality as the cost for clarifying the impulse re-

sponse of the system to the new uncorrelated et.

Coming to our case, and using the software RATS, the impulse response of a unitary

shock in the IPI of Japan is

Responses to shock in Japan

Entry Japan SKorea

1 5.34587718 2.0207426

2 4.17300936 -0.2401093

3 3.25746487 0.4095402

4 2.54278782 0.9288720

5 1.98490856 1.3467273

6 1.54942617 1.6856245

7 1.20948718 1.9631471

8 0.94412968

And the impulse response to a shock in the IPI of South Korea:

Responses to shock in SKorea

Entry Japan SKorea

1 0.00000000 1.7054029

2 0.00000000 1.7402933

3 0.00000000 1.7758974

4 0.00000000 1.8122300

5 0.00000000 1.8493059

6 0.00000000 1.8871403

7 0.00000000 1.9257487

8 0.00000000 1.9651471
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The graphical representation of these responses is depicted in Figs. 2 and 3.

In Fig. 2, the unitary impulse induced in the Japanese IPI decreases with the passing of

time, but has a growing impact in the IPI of South Korea. In contrast, as shown in Fig. 3,

the unitary impulse induced in the IPI of South Korea has an effect only on its own IPI.

The forecast error variance decomposition

Another point of view for the dynamical relationship established by a VAR model is given

by the forecast error variance decomposition (FEVD), which allows us to assign the

fraction of the variance of the error due to each of the variables in the system. In other

words, this decomposition allows us to attribute the error variance at the sources.

Again with RATS, this is the decomposition in our case (Tables 1, 2):

In the first column of these tables are the estimated standard errors of the predictions,

here to a horizon of 8 periods (years). The other columns contain the percentage of the

variance due to each of the variables. The sum of each row adds to the total. For the first

table, 100 % of the error variance is due to Japan. In the second table, the percentage of the

error variance is more distributed, with South Korea having the major part.

Responses to JAPAN
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Fig. 2 Impulse response in Japanese IPI
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Fig. 3 Impulse response in South Korean IPI
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Conclusion

In this paper, a dynamic relationship between the IPI of Japan and the IPI of South Korea

has been established. With the presented model, the Granger causality principle allows us

to say that the IPI of Japan causes the IPI of South Korea. However, the Granger causality

principle is a statistical concept, useful for forecasting time series. As a consequence, it

cannot be extrapolated directly to represent the relationship of the Japanese and South

Korean industries. This is a relationship to be explained by structural studies, far beyond

the objective of this paper.
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